DSE: A Hybrid Evolutionary Algorithm with
Mathematical Search Methods

Francisco Viveros Jiménez

Universidad del Istmo Campus Ixtepec, Ciudad Universitaria S/N, Cd. Ixtepec,
Oaxaca, México. fviveros@bianni.unistmo.edu.mx

Abstract. In this article a new technique Deep Sea Exploration, termed
DSE, is proposed. DSE is a hybrid mathematical and evolutionary method
used for numerical optimization. DSE uses evolutionary methods, such as
three-individual crossover (taken from Differential Evolution), Gaussian
random mutation (also proposed in this article) and a traditional search
method for exploitation (similar to Hooke & Jeeves’ search method) and
adaptive behavior. DSE is applied to a set of benchmark functions and
compared with some evolutionary techniques to show its efficiency.

1. Introduction

The numerical optimization problem is unsolved because of its high level of com-
plexity. Many approaches have been deployed in recent years; the most popular
are the stochastic and mathematical techniques. Mathematical methods can find
an optimal value with a high level of accuracy, but in complex search spaces it is
difficult to find the global optimum, and on many occasions it may not be pos-
sible. In addition, these methods require a lot of processing power. Stochastic
methods are more efficient in exploring complex search spaces and they require
less processing power than mathematical methods. However, stochastic methods
do not guarantee finding the global optimal value.

Evolutionary algorithms are very efficient stochastic techniques. Evolution
strategies (ES) were developed in Germany by Schwefel [8] and Rechemberg [9].
ESs imitate natural (organic) evolution. The number of parents (u) is defined by
the user. The ESs use multiple parents to create offspring [10]. This process is
then repeated to create offspring (A individuals) which are defined by the user.
Once all offspring are created, mutation (Gaussian perturbation) is applied. In
the (u+A)-ES, the mutants and the parent population become one and selection
is based on the ranking of individuals’ fitness. The A best individuals will form
the next generation of parents. This process is repeated for n generations. ESs
perform well and therefore DSE implements some concepts from the (u+X)-ES
in order to ensure successful exploration.

Hooke & Jeeves' (HJ) Direct Search method [7] is a mathematical method.

HJ is used to find the optimal value for functions of n variables. The HJ algorithm
sequence is:

1. Take an initial search point X0 and copy it in XB.

© G. Sidorov, B. Cruz, M. Martinez, S. Torres. (Eds.) Received 19/03/08
Advances in Computer Science and Engineering. Accepted 26/04/08
Research in Computing Science 34, 2008, pp. 59-67 Final version 03/05/08

60 Viveros Jiménez F.

2. HJ explores from XB with an initial step length of D, in the first variable in
both directions.

3. If the exploration points decrease, the function-1 value (in the case of mini-

mization) XB will move in that direction.

Repeat the complete process with the rest of the variables.

When completed, the new value of F is evaluated.
If F decreases, move in the diagonal formed between X0 and XB. The new

point will become the new X0 and XB. If F increases, D is diminished by

half.

7. Repeat the entire process until D reaches a user-defined error value.

Figure 1 illustrates the process.

Fig. 1. Hooke&Jeeves General Idea.

DSE implements a method very similar to HJ to perform a successful ex-
ploitation. This article describes a hybrid technique, which works in a similar
way to (u+A)-ES and implements a numerical method for increasing performance
and also implements adaptive parameters and some concepts from genetic algo-

rithms (GAs).

2. DSE Algorithms

DSE is based on the behavior of a group of human sea explorers. DSE has 3
parameters:

1. B, which represents the number of biologists whose primary objective is to

explore the deepest sea bed.
2. E, which represents the number of experienced explorers who assist this

biologist.
3. N, which represents the number of iterations (generations).

Tlnle explorers and the biologist are being guided by the wise, old ship’s
captain. First, the captain tells the biologist to explore a random point of the

DSE: A Hybrid Evolutionary Algorithm with Mathematical Search Methods 61

sea bed. Next, he decides to send a number of explorers to new points, and the
rest to search in close proximity to the biologist’s points. Then, the explorers
dive into the sea at their assigned point and descend to the deepest possible
point. Once each explorer reaches a point they judge to be the deepest, they
report the success of their mission and return to the ship.

Then, the captain evaluates the new points and sends the B biologist to the
deepest point of the combination of explorers’ and biologist’s points. At the next
time interval (generation in evolutionary algorithms terms) the captain takes the
results of the most recent exploration and examines it. If the explorers find a new
deepest point the captain decides to send more explorers to new points, however,
if the opposite is the case the captain decides to send more explorers to search
in close proximity to the biologist’s points. This process repeats n generations.

Figure 2 shows the DSE process in evolutionary terms.

Explorer 3 Explorer's
Initialization Selection point
Crossover
End Gi

Biologist
Selection

Fig. 2. DSE process.

DSE process in evolutionary terms is:

1. Initialize B random biologist and evaluate all. The biologist is equivalent to
the p parents in the ESs. The captain should be initialized as 0, which means
that all explorers are going to start at random points. Take F value from the
first biologist as the last value of F (UFX).

2. Compare UFX with the F value from the biologist. If F is better than UFX
the captain’s value decreases by 5% (the minimal is 1). If the opposite is the
case the captain’s value increases by 10% (the max is E-1).

3. Initialize the captain’s explorers together with the biologist and the rest with
random points. Make UFX equal to the F value of the first biologist.

4. Perform a Gaussian random mutation. This mutation consists of a slight al-
teration in a random number of variables from the first explorer. The number
of variables needs to be generated with a normal distribution with a mean
of 0 and a standard deviation of 1. The formula for mutation is:

z; =2;+T; rndreal(-0.01,0.01) (1)

In equation 1, j needs to be randomly generated.

62 Viveros Jiménez F.

_ Perform a three-individual (three-membered) crossover on the first captain’s

explorers. The formula for this is:

g = (af + 25 +2§)/3 2)

(<]

Where b=rnd(1,captain), ¢ and d are equal to rmd(1,E) all of them are
individuals from the explorer set, and j represents the variable number.

6. Do a deep descent for all the explorers. To do this initialize D (step size) with
2%P (P is defined by the user and is also the minimal step). Then move the
individual as in HJ with two changes: do not do the diagonal movement and

D will grow if the Function value decreases (minimization case). Equations
3, 4 and 5 show how to increase the value of D.

FD =|(Fi- Fi-1)/D | (3)
FDD =|(FD; - FD;_1)/D | (4)
D=|(FD/FDD | (5)

Where the initial values are:
FDg = Dy, FDDgo = 1.

' Create a list with the results of the new E explorer’s points and the B
Biologist’s points. Sort the list and make the B biologist equal to the first B

points from the sorted list.

. If the generation limit is reached finish and report the results, otherwise

return to step 2.

The Biologist represents the population. The explorer represents the off-
spring. The captain represents the adaptive quality.

3. Results and Discussions

Each test case ran for T=2000 generations and all the cases were run 30 times
each. The parameters were set in the following form: B=100, E=100, P=0.000001.
This set of parameters is not the optimal for each function. These paramaters
were chosen only for experimental purposes. All functions are unconstrained and
are specified in appendix A at the end of this article. The benchmark functions
were taken from [11). All these functions have O for optimal value.

Results in Table 1 show that DSE performs well in most benchmark functions.
DSE is consistent because the standard deviation is small in most cases and
results are close to the optimal value.

Figure 3 displays the convergency graphs for a random test displayed in some
benchmark functions. These graphs show that DSE finds the global optimal zone
in 1000 generations in the majority of cases. Also, the graphs show that DSE
exploitation is relatively slow, because DSE does not find the optimal value with
the P precision expected, but it returned a close value in most cases.

DSE: A Hybrid Evolutionary Algorithm with Math ical Search Methods

Table 1. Results obtainend on test runs

Fy Fs Fs Fr Fy Fio Fiy

Best 0.15267 18.96260 9.03024 0.00078 0.06207 2.05194 0.29521

Worst 0.72645 75.18479 106.79471 0.00881 4.37922 4.09525 0.69629

Mean 0.28892 43.61514 34.97672 0.00368 1.50967 2.93939 0.49720

Standard deviation 0.12287 13.19212 25.22960 0.00193 1.27074 0.49897 0.10922

1000

1000

900 200
800 800
- 700 -~ 700
3 o0 3 600
4 s00 § seo
8 400 X a00
* 300 T 500
200 200
100 100

°

TR P eL L, LS R T Y I
Genenations

Generations.
3000 01
2700 0,09
2400 0,08

= 2100 ~ 007

§ 100 ﬁzn,u

3 1500 4008

x]

X 1200 Zo0s
900 * o003
600 0,02
300 0,01

° °
PRSP LSS AL A AR T B
Generations Generations
6
58
5.6
54
52

’a‘ s

" 48

146

44
gmz
E3K
38
3,6
34
32
3

CEPLELLIES
Generations

Fig. 3. Convergency graphs for test runs.

63

64 Viveros Jiménez F.

F1120 [___’—————A F3
100 120
100
80
e e 80
2 & N
} g o
40 3 40
20 20
° oF
Y)
e eLFL LSS F O RS S SLSL S S
Generations Generations
F5 120 h
100
80
i
g 60
J
40
20

ch e eeL LSS

Generations

Fig. 4. Captain Behavior for functions: Fi, F3 and F5s.

Figure 4 shows graphs for the adaptive behavior. These graphs show that the

captain stimulates exploration in the early generations and encourages exploita-

tion in the final stages.
Table 2 shows a comparison between a (100+100)-ES and DSE. Table 3

shows the comparison between the mean values from DSE and some Diferential
Evolution (DE) variants. The results from DE variants were taken from [11].
Table 4 shows the comparison between the mean values from DSE and some
Particle Swarm Optimization (PSO) variants. The results from FPSO [6], DPSO
[4], DEPSO were taken from [2]. Best results are marked in boldface.

Table 2. Comparative table of performance for Fio

Fio DSE ES

Best 2.051 13.4

Worst 4.095 15.07

Mean 2.939 14.44

Standar deviation 0.498 0.526

DSE: A Hybrid Evolutionary Algorithm with Math I Search Methods 65

Table 3. Comparative table of performance between DSE and DE variants

R F3 Fs Fy Fy Fio Fn
DSE 0.28892 43.61514 34.97672 0.00368 1.50967 2.93939 0.49720
rand/1/bin 0.0 0.02430 19.57789 0.0 0.0 0.0 0.00111
rand/1/exp 0.0 0.0 6.69606 0.0 97.75393 0.08003 0.00007
best/1/bin 0.0 0.0 30.39087 0.0 0.0 0.0 0.00072

best/1/exp 407.972 10.6078 132621 0.070545 40.00397 9.3961 5.9278

Table 4. Comparative table of performance between DSE and PSO variants

Fs Fo Fn

DSE 34.9767 1.5096 0.4972
DPSO 57.2802 4.2265 0.0119
DEPSO 60.6405 0.0 0.0055
FPSO 124.4184 22.5239 0.0149

DSE is competitive when compared with other techniques. It is also performs
better in some cases.

4, Conclusions

This article describes a hybrid mathematical and evolutionary method called
DSE. The hybrid strategies provide the exploration using techniques from ESs
and GAs. The exploitation is provided by a numerical technique similar to HJ.
The test shows that DSE performs well in most test cases. However, more com-
parative work and studies should be carried out to provide a fuller, more detailed
analysis and refinement. The adaptive behavior performs in the desired way and
this is shown in the performance of DSE. Some unreported tests show that DSE
without the adaptive behavior perform less efficiently. Future work with con-
strained function should be performed to observe the behavior of DSE.

Acknowledgments

Thanks to Damhait Dennis for the grammar check, to Ignacio Luna Espinoza
for the statistical test check and to UNISTMO for the opportunity. I also want
to thank Karla Arroyo Martello for all the support that she gives me.

66 Viveros Jiméne: F.

References

Beyer, H-G., Schwefel, H-P.: Evolution strategies: a comprehensive introduction.

Natural Computing, Volume 1, Number 1, Springer Netherlands. (2002) 3-52.

Wen-Jun, Z., Xiao-Feng, X.: DEPSO: Hybrid Particle Swarm with Differential

Evolution Operator. IEEE Int. Conf. on Systems, Man & Cybernetics. (2003)

3816-3821

. Storn, R., Price, K.: Differential Evolution - a simple and efficient heuristic for
global optimization. Journal of Global Optimization, Volume 11, Number 4,

Springer Netherlands. (1997) 341-359.

Shi, Y H., Eberhart, R C.: Fuzzy adaptive particle swarm optimization. IEEE

Int, Conf. on Evolutionary Computation. (2001) 101-106.

Wolpert, D H., Macready W G.: No free lunch theorems for optimization. IEEE

Trans. on Evolutionary Computation. (1997) 67-82.

Xie, X F., Zhang, Z L.: A dissipative particle swarm optimization. Congress on
Evolutionary Computation. (2002) 1456-1461.

7. Hooke, R., Jeeves, T A.: Direct Search Solution of Numerical and Statistical

Problems. Journal of the ACM, Volume 8. (1961) 212-229.

. Schwefel, H P.: Kybernetische evolution als strategie der experimentellen
forschung in der strmungstechnik. Diploma thesis, Technical Univ. of Berlin.
965W. Atmar, Eds. La Jolla, C Evolutionary Programming Society. (1992) 35—

—

N

w

o

B

=]

42.
Rechenberg, I Evolutionsstrategie: Optimierung technischer systeme nach

prinzipien der biolgischen evolution. Stuttgart: Frommann- Holzboog Verlag.
the Sec. Parallel Problem Solvingfvom Nature Conf., R. Manner and B. Mand-
erick, Eds. The Netherlands: Elsevier Science Press. (1973) 175-186.

Schwefel, H P.: Numerische optimierung von computer-modellen mittels der evo-
lutionsstrategie. Interdisciplinary systems research, volume 26 Basel: Birkhuser.
(1997).

Mezura-Montes, E., Coello, C CA., Velazquez, R J.: A comparative study of
differential evolution variants for global optimization. Proceedings of the 8th
annual conference on Genetic and evolutionary computation. (2006) 485-492.

©

10.

11.

APPENDIX

A Test Functions

The benchmark functions were take from [11].
f01 - Sphere Model

filz) = E?glx?
-100 = z; s 100

mln(fl) = fl(Oy"'>O) =0

DSE: A Hybrid Evolutionary Algorithm with Math

7

f03 - Schwefel’s Problem 1.2

fa(z) = ?.:1 (Z;:: 11’)2
-100 s z; s 100
min(f3) = f3(0, .,0)=0

f05 - Generalized Rosenbrock’s Function

fs(@) = T2, 1100(zis1 - 22)? + (z: - 1)? |

-30s z; s 30
min(fs) = f5(0,...,0) =0

f07 - Quartic Function with Noise

f2(z) = Y32, izt + random[0, 1)

-128s z; s 1.28
min(f7) = f2(0,...,0) =0
f09 - Generalized Rastrigin’s Function

folz) = T2, [2? - 100cos(27z;) + 10]

-5.12< z; s 5.12
mln(fQ) = fg(O, ,0) =0
f10 - Ackley’s Function

67

fro(z) = - 20ezp (— 0.2\/ o a:?) - ezp ('3'1'6 ¥R, cos(21rz,-)) +20+e

-32sz;s 32
mz'n’(fl()) = flO(O) 10) =0

f11 - Generalized Griewank’s Function

30 30 ;
@) = s Tio, 22 - [Ti=; cos (\1/";) +1

-600 < z; < 600
min(fu) = f(o,..,0)=0

